header banner
Default

The start of dark-induced senescence is determined by Golgi functional integrity imposed by COG - Nature Plants


Table of Contents
  • Vukasinovic, N. & Zarsky, V. Tethering complexes in the Arabidopsis endomembrane system. Front. Cell Dev. Biol. 4, 46 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, R. D. & Lupashin, V. V. Role of the conserved oligomeric Golgi (COG) complex in protein glycosylation. Carbohydr. Res. 343, 2024–2031 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fotso, P., Koryakina, Y., Pavliv, O., Tsiomenko, A. B. & Lupashin, V. V. Cog1p plays a central role in the organization of the yeast conserved oligomeric Golgi complex. J. Biol. Chem. 280, 27613–27623 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Bailey Blackburn, J., Pokrovskaya, I., Fisher, P., Ungar, D. & Lupashin, V. V. COG complex complexities: detailed characterization of a complete set of HEK293T cells lacking individual COG subunits. Front. Cell Dev. Biol. 4, 23 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Blackburn, J. B., D’Souza, Z. & Lupashin, V. V. Maintaining order: COG complex controls Golgi trafficking, processing, and sorting. FEBS Lett. 593, 2466–2487 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farkas, R. M., Giansanti, M. G., Gatti, M. & Fuller, M. T. The Drosophila Cog5 homologue is required for cytokinesis, cell elongation, and assembly of specialized Golgi architecture during spermatogenesis. Mol. Biol. Cell 14, 190–200 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pokrovskaya, I. D. et al. Conserved oligomeric Golgi complex specifically regulates the maintenance of Golgi glycosylation machinery. Glycobiology 21, 1554–1569 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shestakova, A., Zolov, S. & Lupashin, V. COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation. Traffic 7, 191–204 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Cottam, N. P. & Ungar, D. Retrograde vesicle transport in the Golgi. Protoplasma 249, 943–955 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Tan, X. et al. Arabidopsis COG complex subunits COG3 and COG8 modulate Golgi morphology, vesicle trafficking homeostasis and are essential for pollen tube growth. PLoS Genet. 12, e1006140 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Willett, R. et al. COG lobe B sub-complex engages v-SNARE GS15 and functions via regulated interaction with lobe A sub-complex. Sci. Rep. 6, 29139 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Oka, T. et al. Genetic analysis of the subunit organization and function of the conserved oligomeric Golgi (COG) complex: studies of COG5- and COG7-deficient mammalian cells. J. Biol. Chem. 280, 32736–32745 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa, T. et al. EMBRYO YELLOW gene, encoding a subunit of the conserved oligomeric Golgi complex, is required for appropriate cell expansion and meristem organization in Arabidopsis thaliana. Genes Cells 13, 521–535 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Whyte, J. R. C. & Munro, S. The SeC34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev. Cell 1, 527–537 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston, V. et al. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J. 42, 567–585 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Kim, J. H., Lyu, J. I., Woo, H. R. & Lim, P. O. New insights into the regulation of leaf senescence in Arabidopsis. J. Exp. Bot. 69, 787–799 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Law, S. R. et al. Darkened leaves use different metabolic strategies for senescence and survival. Plant Physiol. 177, 132–150 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, Y. et al. Age-triggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5. Mol. Plant 7, 1776–1787 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Liu, Z., Chen, Y., He, J. X. & Bi, Y. PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) positively regulates dark-induced senescence and chlorophyll degradation in Arabidopsis. Plant Sci. 237, 57–68 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Grbic, V. & Bleecker, A. B. Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J. 8, 595–602 (1995).

    Article  CAS  Google Scholar 

  • He, Y., Fukushige, H., Hildebrand, D. F. & Gan, S. Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol. 128, 876–884 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walley, J. W. & Dehesh, K. Molecular mechanisms regulating rapid stress signaling networks in Arabidopsis. J. Integr. Plant Biol. 52, 354–359 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Benn, G. et al. Plastidial metabolite MEcPP induces a transcriptionally centered stress-response hub via the transcription factor CAMTA3. Proc. Natl Acad. Sci. USA 113, 8855–8860 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benn, G. et al. A key general stress response motif is regulated non-uniformly by CAMTA transcription factors. Plant J. 80, 82–92 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walley, J. W. et al. Mechanical stress induces biotic and abiotic stress responses via a novel cis-element. PLoS Genet. 3, 1800–1812 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Bjornson, M. et al. Distinct roles for mitogen-activated protein kinase signaling and CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATOR3 in regulating the peak time and amplitude of the plant general stress response. Plant Physiol. 166, 988–996 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil, M. J., Coego, A., Mauch-Mani, B., Jordá, L. & Vera, P. The Arabidopsis csb3 mutant reveals a regulatory link between salicylic acid-mediated disease resistance and the methyl-erythritol 4-phosphate pathway. Plant J. 44, 155–166 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Jung, H. S. & Chory, J. Signaling between chloroplasts and the nucleus: can a systems biology approach bring clarity to a complex and highly regulated pathway. Plant Physiol. 152, 453–459 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiki, Y. et al. Dark-inducible genes from Arabidopsis thaliana are associated with leaf senescence and repressed by sugars. Physiol. Plant. 111, 345–352 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Book, A. J. et al. Affinity purification of the Arabidopsis 26S proteasome reveals a diverse array of plant proteolytic complexes. J. Biol. Chem. 285, 25554–25569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurepa, J. & Smalle, J. A. Structure, function and regulation of plant proteasomes. Biochimie 90, 324–335 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Grumati, P. & Dikic, I. Ubiquitin signaling and autophagy. J. Biol. Chem. 293, 5404–5413 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Marshall, R. S. & Vierstra, R. D. Autophagy: the master of bulk and selective recycling. Annu. Rev. Plant Biol. 69, 173–208 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Abdollahzadeh, I., Schwarten, M., Gensch, T., Willbold, D. & Weiergraber, O. H. The Atg8 family of proteins—modulating shape and functionality of autophagic membranes. Front. Genet. 8, 109 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson, A. R., Doelling, J. H., Suttangkakul, A. & Vierstra, R. D. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol. 138, 2097–2110 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y. & Bassham, D. C. Autophagy: pathways for self-eating in plant cells. Annu. Rev. Plant Biol. 63, 215–237 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Luo, M. & Zhuang, X. Analysis of autophagic activity using ATG8 lipidation assay in Arabidopsis thaliana. Bio. Protoc. 8, e2880 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313–326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, H. & Schippers, J. H. M. The role and regulation of autophagy and the proteasome during aging and senescence in plants. Genes (Basel) 10, 267 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Woo, H. R., Kim, H. J., Nam, H. G. & Lim, P. O. Plant leaf senescence and death – regulation by multiple layers of control and implications for aging in general. J. Cell Sci. 126, 4823–4833 (2013).

    CAS  PubMed  Google Scholar 

  • Wada, S. et al. Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol. 149, 885–893 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriyasu, Y. & Ohsumi, Y. Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol. 111, 1233–1241 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondou, Y., Higuchi, M., Ichikawa, T. & Matsui, M. Application of full-length cDNA resources to gain-of-function technology for characterization of plant gene function. Methods Mol. Biol. 729, 183–197 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y. et al. Rab6 regulates both ZW10/RINT-1 and conserved oligomeric Golgi complex-dependent Golgi trafficking and homeostasis. Mol. Biol. Cell 18, 4129–4142 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohda, M. et al. The interaction of two tethering factors, p115 and COG complex, is required for Golgi integrity. Traffic 8, 270–284 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Foulquier, F. COG defects, birth and rise. Biochim. Biophys. Acta 1792, 896–902 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Climer, L. K., Dobretsov, M. & Lupashin, V. Defects in the COG complex and COG-related trafficking regulators affect neuronal Golgi function. Front. Neurosci. 9, 405 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Blackburn, J. B., Kudlyk, T., Pokrovskaya, I. & Lupashin, V. V. More than just sugars: conserved oligomeric Golgi complex deficiency causes glycosylation-independent cellular defects. Traffic 19, 463–480 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwek, R. A. Glycobiology: toward understanding the function of sugars. Chem. Rev. 96, 683–720 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Zeng, W., Ford, K. L., Bacic, A. & Heazlewood, J. L. N-linked glycan micro-heterogeneity in glycoproteins of Arabidopsis. Mol. Cell Proteomics 17, 413–421 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Henry, I. M. et al. Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing. Plant Cell 26, 1382–1397 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng, L. & Dehesh, K. The eukaryotic MEP-pathway genes are evolutionarily conserved and originated from Chlaymidia and cyanobacteria. BMC Genomics 22, 137 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamesch, P. et al. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 40, D1202–D1210 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Verzani, J. A peer-reviewed, open-access publication of the R Foundation for Statistical Computing. R J. 10, 4 (2018).

    Google Scholar 

  • Dillies, M. A. et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief. Bioinform. 14, 671–683 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Wickham, H. ggplot2. Elegant Graphics for Data Analysis (Springer, 2009).

  • Gu, Z. G., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Choi, M. et al. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 30, 2524–2526 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Gower, J. C. & Mardia, K. V. Multivariate-analysis and its applications – a report on the Hull conference, 1973. R. Stat. Soc. C: Appl. Stat. 23, 60–66 (1974).

    Google Scholar 

  • Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Foster, C. E., Martin, T. M. & Pauly, M. Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) part I: lignin. J. Vis. Exp. 37, 1745 (2010).

    Google Scholar 

  • Sources


    Article information

    Author: Melanie Herrera

    Last Updated: 1699809962

    Views: 1579

    Rating: 3.6 / 5 (103 voted)

    Reviews: 98% of readers found this page helpful

    Author information

    Name: Melanie Herrera

    Birthday: 2001-08-12

    Address: 32716 Martin Tunnel, South Keithton, TN 07108

    Phone: +4129737386172863

    Job: Radio DJ

    Hobby: Backpacking, Crochet, Playing Chess, Hiking, Basketball, Cocktail Mixing, Embroidery

    Introduction: My name is Melanie Herrera, I am a bold, treasured, enterprising, unguarded, persistent, expert, fearless person who loves writing and wants to share my knowledge and understanding with you.